

IN-SPACE TECHNOLOGY EXPERIMENTS

IN-REACH & OUT-REACH PROGRAMS

PROGRAM OVERVIEW BY JON S. PYLE

OAST FLIGHT PROJECTS DIVISION

PRECEDING PAGE BLANK NOT FILMED

IN-SPACE TECHNOLOGY EXPERIMENTS

O-1-S-T

-ZLIGHT--PROJECTS--DIVISION-

IN-REACH & OUT-REACH PROGRAMS

- FORMALIZED PROCESS OF IDENTIFYING ADVANCED SPACE TECHNOLOGIES
 - TECHNOLOGIES MUST BE FULLY DEVELOPED ON GROUND
 - REQUIRES SPACE FLIGHT ENVIRONMENT FOR VALIDATION OR VERIFICATION
- PROGRAMS INCLUDE:
 - EXPERIMENT DEFINITION
 - HARDWARE DEVELOPMENT
 - EXPERIMENT INTEGRATION
 - FLIGHT SUPPORT
 - REPORTING

049Z

IN-SPACE TECHNOLOGY EXPERIMENTS OBJECTIVES

 PROVIDE FOR IN-SPACE FLIGHT RESEARCH EVALUATION & VALIDATION OF ADVANCED SPACE TECHNOLOGIES

OUT-REACH PROGRAM

- INDUSTRY/UNIVERSITY FLIGHT TECHNOLOGY EXPERIMENTS

IN-REACH PROGRAM

 NASA FLIGHT TECHNOLOGY EXPERIMENTS

IN-REACH

NASA IN-SPACE TECHNOLOGY EXP.

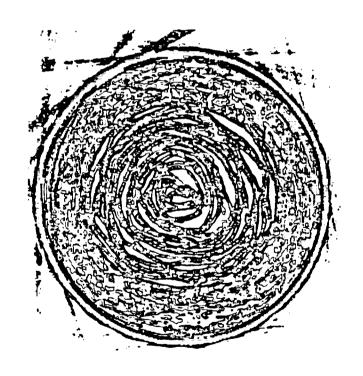
-FLYGHT---PROJECTS---DIVISION-

CENTERS REPRESENTED:

ARC, GSFC, JPL, JSC, LaRC, LeRC, MSFC

- 58 PROPOSALS SUBMITTED
- 7 PROPOSALS SELECTED
- FLIGHT EXPERIMENT DEFINITION:
 - DEBRIS COLLISION SENSOR
 - SPACE STATION STRUCTURAL CHARACTERIZATION
 - LASER COMMUNICATION
 - LASER SENSOR
 - CONTAMINATION SENSOR
 - EXPOSURE OF THIN-FOIL MIRRORS
- FLIGHT EXPERIMENT DEVELOPMENT
 - THERMAL ENERGY STORAGE MATERIALS TECHNOLOGY

IN-REACH


FLIGHT EXPERIMENT DEVELOPMENT

OAST

ELKGYET—PEROJECES—PYVISYONL

THERMAL ENERGY STORAGE (TES) MATERIALS TECHNOLOGY

COMPUTER ENHANCED SCAN OF TES CANISTER CROSS-SECTION

CONCEPT:

 IN-SPACE THERMAL CYCLING OF A VARIETY OF PHASE CHANGE TES MATERIALS (VARING TEMPERATURE RANGES) TO UNDERSTAND VOID CHARACTERIZATION IN MICRO-G ORIGINAL PAGE IS OF POOR QUALITY

IN-REACH

FLIGHT EXPERIMENT DEVELOPMENT

DAST PROJECTS DIVISION—

THERMAL ENERGY STORAGE (TES) MATERIALS TECHNOLOGY OBJECTIVES:

- IDENTIFY VOID LOCATION, VOID SIZE & MELT/FREEZE PATTERNS FOR VARIOUS TEMPERATURE RANGE TES MATERIALS UNDER MICRO-GRAVITY CONDITIONS
- VERIFY ANALYTICAL & GROUND EXPERIMENTAL PREDICTED BEHAVIOR OF TES MATERIALS SUBJECTED TO THE MICRO-GRAVITY ENVIRONMENT

BENEFITS/PAYOFFS:

- CRITICAL TO DESIGN OF ADVANCED, LONGER LIFE, HIGHLY RELIABLE INTEGRALTHERMAL STORAGE HEAT RECEIVERS
- SIGNIFICANT REDUCTION IN WEIGHT POSSIBLE OVER PHOTOVOLTAIC SYSTEM

LEAD CENTER CONTACT:

 DR. LYNN ANDERSON LEWIS RESEARCH CENTER (216) 433-2874

OUT-REACH INDUSTRY/UNIVERSITY IN-SPACE TECHNOLOGY EXPERIMENTS

OAST-PROJECTS-DIVISION-

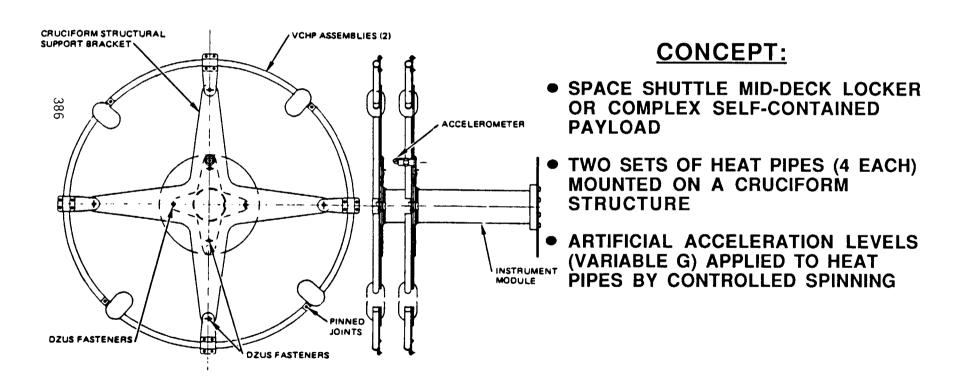
• PARTICIPATION:

- 231 PROPOSALS SUBMITTED (91 UNIVERSITY & 140 INDUSTRY)

• 36 FLIGHT EXPERIMENT DEFINITION STUDIES:

- 5 SPACE STRUCTURES
- 7 FLUID MANAGEMENT
- 3 INFORMATION SYSTEMS
- 5 ENERGY SYSTEMS & THERMAL MANAGEMENT
- 2 SPACE ENVIRONMENTAL EFFECTS
- 10 IN-SPACE OPERATIONS
- 4 AUTOMATION & ROBOTICS

• 5 FLIGHT EXPERIMENT HARDWARE DEVELOPMENTS:


- HEAT PIPE THERMAL PERFORMANCE & FLUID BEHAVIOR
- TANK PRESSURE CONTROL
- INVESTIGATION OF SPACECRAFT GLOW
- MID-DECK ZERO-GRAVITY DYNAMICS EXPERIMENT
- EMULSION CHAMBER TECHNOLOGY

FLIGHT EXPERIMENT DEVELOPMENT

O-A-S-T

FLIGHT—PROJECTS—

HEAT PIPE PERFORMANCE & WORKING FLUID BEHAVIOR

FLIGHT EXPERIMENT DEVELOPMENT

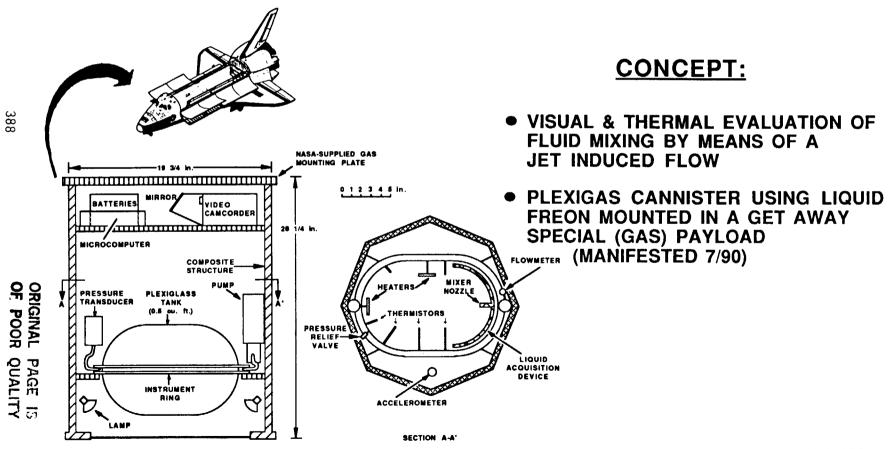
DAST----FLIGHT-PROJECTS-DIVISION-

HEAT PIPE PERFORMANCE & WORKING FLUID BEHAVIOR

OBJECTIVES:

- STUDY EFFECTS OF MICRO-GRAVITY ON WORKING FLUIDS IN HEAT PIPES
- DETERMINE RECOVERY RATES FOR DEPRIMED VARIABLE CONDUCTANCE HEAT PIPES IN 0-G
- VALIDATE ANALYTICAL MODELS & UPGRADE GROUND TEST TECHNIQUES

BENEFITS/PAYOFFS:


- SPACECRAFT LIQUID INVENTORIES COULD BE REDUCED THROUGH BETTER UNDERSTANDING OF 0-G FLUID BEHAVIOR
- IMPROVE POWER SYSTEM HEAT DISIATION & REDUCE ADVANCED SPACECRAFT SYSTEM DESIGN RISKS

LEAD CENTER CONTACT:

 DON FRIEDMAN GODDARD SPACE FLIGHT CENTER (301) 286-6242

FLIGHT EXPERIMENT DEVELOPMENT

TANK PRESSURE CONTROL EXPERIMENT

FLIGHT EXPERIMENT DEVELOPMENT

0-1-9-7-

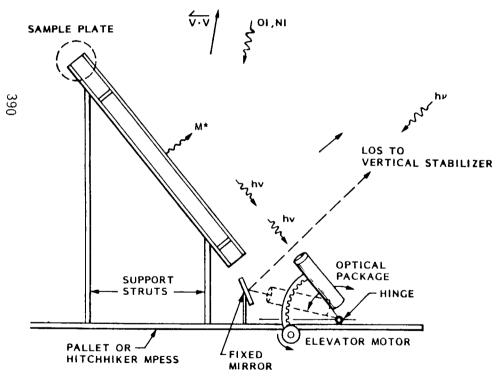
ELGHE—PROJECES—DIVISION—

TANK PRESSURE CONTROL EXPERIMENT

OBJECTIVES:

- DETERMINE THERMAL STRATIFICATION OF FLUIDS IN 0-G
- STUDY EFFECTIVENESS OF JET INDUCED MIXING
- VALIDATE OR UPGRADE EXISTING ANALYTICAL MODELS

BENEFITS/PAYOFFS:


- REDUCES TANK OVERPRESSURE RISKS CAUSED BY HIGH THERMAL GRADIENTS IN LIQUIDS
- PROVIDES BETTER DESIGN TECHNIQUES FOR FUTURE SPACECRAFT SYSTEMS

LEAD CENTER CONTACT:

 DR. LYNN ANDERSON LEWIS RESEARCH CENTER (216) 433-2874

FLIGHT EXPERIMENT DEVELOPMENT

INVESTIGATION OF SPACECRAFT GLOW

CONCEPT:

- PLATE WITH MATERIAL SAMPLES MOUNTED TOWARD RAM (NORMAL INCIDENCE) DIRECTION
- OPTICAL MEASUREMENTS USED TO CHARACTERIZE THE GLOW
- OBTAIN MEASUREMENTS OF GLOW ABOVE MATERIAL SURFACE OVER TEMPERATURE RANGE & SPECTRAL REGIONS

FLIGHT EXPERIMENT DEVELOPMENT

O-A-S-T

ELIGHE—PROMECES—DIVISION—

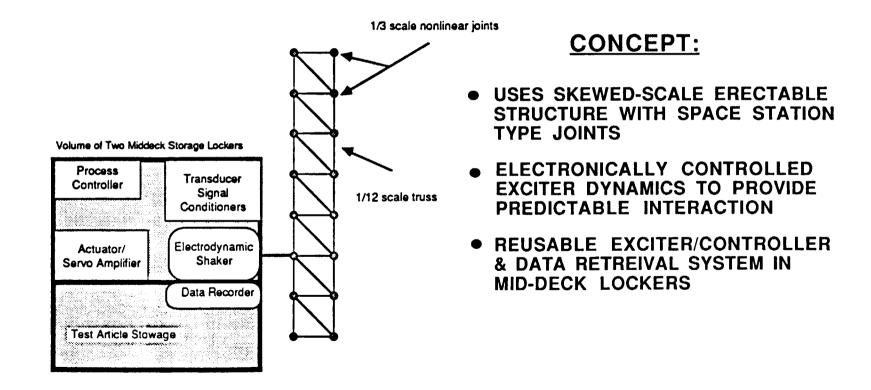
INVESTIGATION OF SPACECRAFT GLOW

OBJECTIVES:

- MEASURE THE INTENSITY, SPATIAL DISTRIBUTION & SPECTRUM OF SPACE GLOW
- DETERMINE THE GLOW INTENSITY AS A FUNCTION OF SURFACE TEMPERATURE & MATERIALS
- IDENTIFY MECHANISMS PRODUCING GLOW & APPROACHES TO MINIMIZE ITS EFFECTS

BENEFITS/PAYOFFS:

- ELIMINATE INTERFERRENCE OF GLOW ON SPACE FLIGHT EXPERIMENTS (SUCH AS OPTICS)
- MAY PROVIDE TECHNIQUES FOR SPACECRAFT DETECTION
 & IDENTIFICATION


LEAD CENTER CONTACT:

 KEITH HENDERSON JOHNSON SPACE CENTER (713) 282-1807

FLIGHT EXPERIMENT DEVELOPMENT

—OAST FLICHT PROJECTS

MID-DECK ZERO-GRAVITY DYNAMICS EXPERIMENT

FLIGHT EXPERIMENT DEVELOPMENT

OAST

_FLIGHT__PROJECTS__DIVISION_

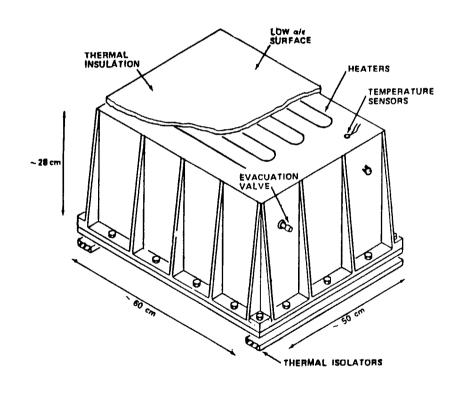
MID-DECK ZERO-GRAVITY DYNAMICS EXPERIMENT

OBJECTIVES:

- INVESTIGATE DYNAMICS OF NONLINEAR SPACECRAFT SYSTEMS IN A MICRO-GRAVITY ENVIRONMENT
- PROVIDE LONG DURATION 0-G FLIGHT DATA TO CORRELATE WITH GROUND TEST RESULTS & ANALYTICAL PREDICTIONS

BENEFITS/PAYOFFS:

- REDUCE RISKS OF SPACECRAFT DESTABILIZATION DUE TO LIMITED UNDERSTANDING OF COMPLEX DYNAMIC INTERACTIONS
- IMPROVED DESIGN TECHNIQUES & GREATER RELIABILITY ALLOW REDUCTIONS IN SPACECRAFT WEIGHTS


LEAD CENTER CONTACT:

• LENWOOD CLARK LANGLEY RESEARCH CENTER (804) 865-4834

FLIGHT EXPERIMENT DEVELOPMENT

-OAST FLIGHT PROJECTS

EMULSION CHAMBER TECHNOLOGY

CONCEPT:

- 300 LAYER NUCLEAR TRACK EMULSION IN SHIELDED HERMETIC ENCLOSURE
- LONG TERM EXPOSURE TO SPACE ENVIRONMENT IN SPACE SHUTTLE BAY

FLIGHT EXPERIMENT DEVELOPMENT

OAST

-ZHAHT—PRONZCIS—PWKKON—

EMULSION CHAMBER TECHNOLOGY

OBJECTIVES:

- VALIDATION OF EMULSION CALORIMETER TO BE USED FOR HIGH ENERGY COSMIC RAY DETECTION
- STUDY OF SHIELDING TECHNIQUES FOR EMULSION CALORIMETERS
- VERIFY PREDICTED HIGH ENERGY PARTICLE DATA

BENEFITS/PAYOFFS:

- ENABLES EXTENSION OF COSMIC RAY COMPOSITION
 & NUCLEAR INTERACTION CHARATERISTICS
- POTENTIAL IMPROVEMENTS IN SHIELDING APPLICATIONS
 FOR FUTURE MANNED SPACECRAFT

LEAD CENTER CONTACT:

 JON HAUSSLER MARSHALL SPACE FLIGHT CENTER (205) 544-1762

(O=A=S=T=

IN-SPACE TECHNOLOGY EXPERIMENTS

WORKSHOP

HYATT REGENCY HOTEL ATLANTA, GA

DECEMBER 6, 7, 8, & 9, 1988

IN-REACH & OUT-REACH PROGRAMS

O-A-S-I

-ZLIGHE—PROJECES—DIVISION=

IN-SPACE TECHNOLOGY EXPERIMENTS WORKSHOP

WORKSHOP PURPOSE

- REVEIW OF CURRENT PROGRAMS & DISCUSSION OF FUTURE PLANS
- DESCRIPTION OF FLIGHT OPPORTUNITIES & INTEGRATION PROCESS
- IDENTIFICATION OF CRITICAL TECHNOLOGY NEEDS IN EACH THEME AREA

_		